Boundary Conditions for Quantum Lattice Systems

نویسنده

  • M. Fannes
چکیده

For classical lattice systems, the Dobrushin-Lanford-Ruelle theory of boundary conditions states that the restriction of a global equilibrium state to a subsystem can be obtained as an integral over equilibrium states of the subsystem alone. The Hamiltonians for the subsystem are obtained by fixing a configuration for the variables in the complement of the subsystem, or more generally, by evaluating the full interaction Hamiltonian with respect to a state for the complement. We provide examples showing that the quantum mechanical version of this statement is false. It fails even if the subsystem is classical, but embedded into a quantum environment. We suggest an alternative characterization of the local restrictions of global equilibrium states by inequalities involving only local data. Mathematics Subject Classification (1991): 82B10, 46L60, 82B20, 1 Inst. Theor. Fysica, Universiteit Leuven, B-3001 Heverlee, Belgium. Email: [email protected] 2 Onderzoeksleider, NFWO Belgium 3 Fachbereich Physik, Universität Osnabrück, 49069 Osnabrück, Germany. Email: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Solution of Natural Convection in an Open Cavity using Different Boundary Conditions via Lattice Boltzmann Method

A Lattice Boltzmann method is applied to demonstrate the comparison results of simulating natural convection in an open end cavity using different hydrodynamic and thermal boundary conditions. The Prandtl number in the present simulation is 0.71, Rayleigh numbers are 104,105 and 106 and viscosities are selected 0.02 and 0.05. On-Grid bounce-back method with first-order accuracy and non-slip met...

متن کامل

The effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows by Lattice-Boltzmann method

The aim of this study is to investigate the effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows in the context of single relaxation time Lattice Boltzmann method (SRT-LBM). The fluid flows are simulated using regularized, no-slip, Zou-He and bounce back boundary conditions for straight surfaces in a lid driven cavity and the two-dimensional flow ...

متن کامل

Finite lattice Bethe ansatz systems and the Heun equation

We study the Pöschl-Teller equation in complex domain and deduce infinite families of TQ and Bethe ansatz equations, classified by four integers. In all these models the form of T is very simple, while Q can be explicitly written in terms of the Heun function. At particular values there is a interesting interpretation in terms of finite lattice spin2 XXZ quantum chain with ∆ = cos π L (for free...

متن کامل

2 9 A pr 1 99 8 Quantum Renormalization Group for 1 Dimensional Fermion Systems : a Modified Scheme

Inspired by the superblock method of White, we introduce a simple modification of the standard Renormalization Group (RG) technique for the study of quantum lattice systems. Our method which takes into account the effect of Boundary Conditions(BC), may be regarded as a simple way for obtaining first estimates of many properties of quantum lattice systems. By applying this method to the 1-dimens...

متن کامل

A Simplified Curved Boundary Condition in Stationary/Moving Boundaries for the Lattice Boltzmann Method

Lattice Boltzmann method is one of computational fluid dynamic subdivisions. Despite complicated mathematics involved in its background, end simple relations dominate on it; so in comparison to the conventional computational fluid dynamic methods, simpler computer programs are needed. Due to its characteristics for parallel programming, this method is considered efficient for the simulation of ...

متن کامل

Implementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems

In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995